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Abstract

The beam quality in RHIC can be significantly im-
pacted by a transverse instability which can occur just after
transition[1]. Data characterizing the instability are pre-
sented and analyzed. Techniques for ameliorating the situ-
ation are considered.

DATA

During the run of 2003 a button beam position moni-
tor was used to measure instabilities in the deuteron beam.
During the injection process the most intense bunch was
determined. Beginning at transition, triggers were gener-
ated every 100 turns (1.28 ms) for this bunch. A total of
4000 triggers were generated each acceleration cycle and
sent to a digital oscilliscope (Lecroy waverunner) in seg-
mented memory mode. Each trigger generated 200 ns of
data sampled at 2 GHz. Instabilites were observed in the
vertical plane. Horizontal signals were much smaller.

Figure 1 shows a mountain range plot of sum (blue) and
difference (red) signals from the buttons. The spacing be-
tween the buttons is 7 cm. The RC time constant of the but-
ton is 0.5 ns and has been ignored in the analysis. Trigger
jitter was removed by integrating the sum signal, fitting a
parabolic cap to the peak, and shifting the data using linear
interpolation. Next, closed orbit effects were removed by
subtracting the same fixed multiple of the sum signal from
all the difference signals. Finally, each difference trace was
viewed as a vector and a principle component analysis was
done. This technique is refered to as canonical variables in
the statistical literature [2]. In brief, one starts with a set of
vectors vm(n), where m = 1, 2, . . . M is the index within
a vector, and n = 1, 2, . . . N denotes the vector in the set.
In Fig 1, each red trace corresponds to a different n, and
m varies from 1 to M = 30 within a trace. The question
is whether it takes all 30 indicies to characterize the data.
Toward this end assume the existence of a vector xm and
consider the Lagrangian

L =
N∑

n=1

(
M∑

m=1

vm(n)xm

)2

− λ

M∑
m=1

x2
m,

where λ will be an eigenvalue. Demanding that ∂L/∂xk =
0 for k = 1, 2, . . . M leads to the equations of principle
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Figure 1: Difference (red,left) and sum (blue,right) data
from a pair of vertical buttons. The sum data have been
divided by 4.

component analysis. A principle component analysis cor-
responds to changing the set of basis vectors, and this new
set of basis vectors concentrates the signal power in a natu-
ral way. A similar technique has been used to great benefit
in various steering algorithms at the SLC [3]. Fig. 2 shows
the 3 strongest principle components for the data in Fig. 1.

Using the raw button signals leads to the least noise
in the principle component analysis but the eigenvectors
are not intuitive. Integrating the eigenvectors with respect
to time yields a basis that is proportional to the prod-
uct of the offset and the instantaneous current. Fig. 3
shows the integrals of the principle components as well
as the reconstructed beam current pulse from the average
of the sum signal. The three strongest principle compo-
nents are concentrated near the middle of the beam pulse.
This is not a rigid or head-tail mode. The time series of
the principle components are shown in Fig. 4. The enve-
lope over-plotted on component 1 has an e-folding time of
τ = 15.4 ms. During the exponential phase, the amplitude
of vertical oscillations evolves as ŷ ∝ exp(t/τ). The syn-
chrotron frequency was fs = 14 Hz, and the e-folding time
of the transverse mode coupling instability should satisfy
τTMC

>∼1/πfs = 23 ms. After the instability saturates, the
signal for component 1 beats with a ∼ 30 ms period. This
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Figure 2: Average of sum signal and 3 strongest principle
components for data in Fig 1. Component 1 accounted for
most of the variation, then 2, then 3. The traces are offset
vertically to improve clarity.
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Figure 3: Integrals of the average sum signal and the 3
strongest principle components for data in Fig 1.

is about 1/2 of the synchrotron period. One would expect
a beating period >∼1/fs for two, recently decoupled, head-
tail modes. Analyzing the sum data provides no evidence
of longitudinal dipole or quadrupole oscillations.

Slower growing instabilities were also seen. Fig.5 shows
the integrated eigenmodes and the reconstructed beam cur-
rent pulse when such an instability was present. While the
integrated mode 1 is narrower than the average profile, the
effect is small compared to that shown in Fig. 3. Also,
a strong, longitudinal, quadrupole oscillation was present
when this instability occured. The time series of the two
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Figure 4: Time series of the 3 strongest principle compo-
nents for the data in Fig 1. The traces are offset vertically
to improve clarity.
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Figure 5: Integrals of the average sum signal and the
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strongest principle components for a slower instability.
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Figure 6: Time series of the 2 strongest principle compo-
nents for a slower instability. The traces are offset verti-
cally to improve clarity.

strongest principle components are shown in Fig 6. The
envelope over-plotted on the time series for component 1
has an e-folding time of τ = 118 ms.

While instabilities are fascinating from an intellectual
point of view, they are a menace in the control room. The
technique described above is not useful as a tool for tuning
the machine so a new technique was developed. The co-
herence monitor takes data gated around the most intense
bunch in the ring. The sum and difference voltages Vs(t)
and Vd(t) are from a stripline BPM. On each turn n, a sin-
gle number is generated,

Sn ≈ C

∫
bunch

Vs(t)Vd(t)dt.

In actuality the product signal is low passed and then sam-
pled, but parameters are such that the result is effectively
identical. Next this discrete time series is put through a
chip that calculates rms averages, and the control system
samples the output at 720 Hz. This 720 Hz signal can be
viewed through any operations console. Figure 7 displays
the output during a vertical instability. Once the coherence
monitor was commissioned, instabilities were readily iden-
tified and addressed. In fact, single bunch currents that are
twice those shown in Figures 3 and 5 are now routine.

A few words on the tuning required to cure these instabil-
ities is in order. First, since RHIC goes through transition,
the chromaticity ξ = ∆Q/(∆p/p) must pass from negative
to positive in the vicinity of transition. The initial config-
uration had ξ passing through zero a second or two after
transition and the rate of ξ̇ ≈ 3s−1 was as fast as the mag-
nets allowed. However, it was found that ξ passing though
zero before transition worked better. In fact, because of the
transition jump and other considerations, the chromaticities
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Figure 7: Vertical coherence signal used in the control
room.

are not smooth, monotonic functions but exhibit excursions
of order ∆ξ ∼ 1. By passing through ξ before transition
the possibility of nearing ξ = 0 again, after transiton, was
reduced. However, why is having ξ pass through zero well
before transition better than well after?

Along with tuning the chromaticity, octupoles were used
to increase the tune spread. To leading order the tune
shifts with betatron action are ∆Qx = axxJx + axyJy and
∆Qy = axyJx + ayyJy . For RHIC parameters

δQN ≡< axxJx >≈< ayyJy >≈ 5.6 × 10−4,

δQS ≡< axyJx >≈< axyJy >≈ −8.8 × 10−4,

where <> denotes averaging over the beam.
Since δQS > δQN , any theoretical treatment of oc-

tupole detuning should include both transverse dimensions.
So far, only one transverse dimension has been modeled,
but a few points are of interest. Firstly, even though
γt = 23.8, the space charge tune shift, ∆Qsc is many times
larger than the synchrotron tune, Qs. Neglecting space
charge in our simulations, yields stable beams. However,
when space charge is included, the unstable modes don’t
look like the figures, and the calculated growth time is τ ∼
100 ms. Measurements of the transverse impedance [4]
suggest that the actual transverse impedance is about 3
times larger than the our impedance model. It is possi-
ble that using the correct impedance in the simulations will
yield agreement with the data, in Fig. 1 but impedance mea-
surements of higher resolution are required.
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